Performance Evaluation of Affinity Propagation Approaches on Data Clustering
نویسنده
چکیده
Classical techniques for clustering, such as k-means clustering, are very sensitive to the initial set of data centers, so it need to be rerun many times in order to obtain an optimal result. A relatively new clustering approach named Affinity Propagation (AP) has been devised to resolve these problems. Although AP seems to be very powerful it still has several issues that need to be improved. In this paper several improvement or development are discussed in , i.e. other four approaches: Adaptive Affinity Propagation, Partition Affinity Propagation, Soft Constraint Affinity propagation, and Fuzzy Statistic Affinity Propagation. and those approaches are be implemented and compared to look for the issues that AP really deal with and need to be improved. According to the testing results, Partition Affinity Propagation is the fastest one among four other approaches. On the other hand Adaptive Affinity Propagation is much more tolerant to errors, it can remove the oscillation when it occurs where the occupance of oscillation will bring the algorithm to fail to converge. Adaptive Affinity propagation is more stable than the other since it can deal with error which the other can not. And Fuzzy Statistic Affinity Propagation can produce smaller number of cluster compared to the other since it produces its own preferences using fuzzy iterative methods. Keywords—Affinity Propagation, Availability, Clustering, Exemplar, Responsibility, Similarity Matrix.
منابع مشابه
Replication on Affinity Propagation: Clustering by Passing Messages Between Data Points
In this project, I choose the paper, Clustering by Passing Messages Between Data Points [1], published in Science 2007, as the work to replicate. In [1], a new clustering algorithm named Affinity Propagation is proposed. In my report, three research hypothesizes in this paper that are related to the performance, evaluation and scalability of the algorithm are studied. I implement the algorithm ...
متن کاملDistributed and Incremental Clustering Based on Weighted Affinity Propagation
A new clustering algorithm Affinity Propagation (AP) is hindered by its quadratic complexity. The Weighted Affinity Propagation (WAP) proposed in this paper is used to eliminate this limitation, support two scalable algorithms. Distributed AP clustering handles large datasets by merging the exemplars learned from subsets. Incremental AP extends AP to online clustering of data streams. The paper...
متن کاملAn Efficient and Fast Density Conscious Subspace Clustering using Affinity Propagation
Subspace clustering is an eminent task to detect the clusters in subspaces. Density-based approaches assume the high-density region in the subspace as a cluster, but it creates density divergence problem. The proposed work improves the performance of Density Conscious subspace clustering (DENCOS) by utilizing the Affinity Propagation (AP) algorithm to detect the local densities for a dataset. I...
متن کاملPartition Affinity Propagation for Clustering Large Scale of Data in Digital Library
Data clustering is very useful in helping users visit the large scale of data in digit library. In this paper, we present an improved algorithm for clustering large scale of data set with dense relationship based on Affinity Propagation. First, the input data are divided into several groups and Affinity Propagation is applied to them respectively. Results from first step are grouped together in...
متن کاملA New Knowledge-Based System for Diagnosis of Breast Cancer by a combination of the Affinity Propagation and Firefly Algorithms
Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, con...
متن کامل